钼的二次资源主要有两个来源,一是钼冶金过程中产生的含钼废渣、废液等,二是钼金属制品生产过程中产生的废料和用过的含钼化学制品或者材料。根据国际钼协的报道,2011年,将近8万吨钼被回收利用,约占钼总消费量的四分之一,由此可见,回收利用的钼资源已经成为钼供应链上重要的一部分。国际钼协预测,到2020年,钼回收量将达到110000吨,约占钼供应总量的27%,到2030年,这一比例将会达到35%左右。回收的钼约60%用于制造不锈钢,其余则用于制造合金工具钢,超合金,高速钢,铸钢和化学催化剂。
在钨矿物原料分解方面,早期产业化的苏打压煮法发展成为不仅能高效处理白钨精矿、低品位白钨中矿,同时能够处理黑白钨混合矿;在理论 研究得到突破的基础上,NaOH(氢氧化钠)分解法由只能处理低钙黑钨精矿发展成为能处理包括白钨精矿、难选钨中矿在内的各种钨矿物原料的通用技术。当然,随着发展逐步淘汰了NaOH熔合法、苏打烧结法、盐酸分解法等效率低、环境污染严重的传统方法。同时也降低了对选矿的要求,大幅度提高了资源利用率。
以钼为基体加入其他元素(如钛、锆、铪、钨及稀土元素等)构成有色合金,这些合金元素不仅对钼合金起到固溶强化和保持低温塑性的作用,而且还能形成稳定的、弥散分布的碳化物相,提高合金的强度和再结晶温度。钼基合金因为具有良好的强度、机械稳定性、高延展性而被用于高发热元件、挤压磨具、玻璃熔化炉电极、喷射涂层、金属加工工具、航天器的零部件等。
由于钼易于氧化,脆性大,钼冶炼和加工水平有限,钼一直不能进行机械加工,因而无法大规模应用到工业生产中,所用的也仅仅是一些钼化合物。1891年,法国的斯奈德Schneider公司率先将钼作为合金元素生产了含钼装甲板,发现其性能优越,而且钼的密度仅是钨的一半,钼逐渐取代钨成为钢的合金元素,从而拉开了钼工业应用的序幕。