特征提取与判断:识别选民的选择意图
根据选票标记类型(填涂、勾选、手写符号等),算法采用不同的特征提取策略:
(1)填涂标记识别(常见场景)
面积占比法:计算填涂框内黑色像素占比,超过阈值(如 30%-50%)则判定为有效选择。
例:选民使用 2B 铅笔填涂候选人 A 的方框,扫描后该区域黑色像素占比达 45%,算法判定为有效投票。
边缘检测法:通过 Canny 或 Sobel 算子检测填涂区域的边缘轮廓,与标准填涂形状(如矩形、圆形)比对,排除不规则标记(如笔尖打滑形成的短线)。
浓度梯度分析:填涂越均匀的区域,灰度值分布越集中,算法可通过统计像素灰度方差来区分 “认真填涂” 与 “轻微触碰”。
(2)勾选或手写符号识别
形态学分析:通过膨胀、腐蚀等形态学运算,将勾选符号(√)或手写标记(如 “○”)转换为标准形状,再与预设模板匹配。
方向特征提取:对于斜线标记(如 “/”),计算像素分布的梯度方向,判断是否符合 “勾选” 的典型角度(如 45° 或 135°)。
(3)异常标记检测
多选判定:同一候选区域内检测到多个标记(如同时填涂两个候选人框),或单票标记数超过规定(如总统选举多选 1 人),则判定为无效票。
空白票识别:所有候选区域标记面积均低于阈值,判定为未投票。
4. 结果验证与输出:确保计数准确性
重复校验:对关键标记区域进行多次扫描(如两次独立图像采集),结果一致才确认有效。
人工复核接口:对算法判定存疑的选票(如填涂面积接近阈值、标记形状模糊),生成图像供选举工作人员人工审核(如美国部分州要求对 “争议票” 进行人工查验)。
数据输出:将识别结果转换为结构化数据(如候选人 ID、得票数),同步至中央数据库或打印纸质统计表。
典型技术挑战与解决方案
挑战场景 技术应对措施
不同墨水的反光差异 - 采用多光谱光源(如红光 + 红外光),针对不同墨水(铅笔、蓝黑墨水、荧光笔)调整检测波长。
- 机器学习模型训练:用历史数据训练分类器,区分不同墨水材质的标记。
选票折叠或污渍干扰 - 图像修复算法:通过插值法填充折叠造成的图像缺失区域。
- 污渍识别模型:用深度学习区分 “人为标记” 与 “自然污渍”(如咖啡渍形状通常更不规则)。
非标准填涂(如超框、轻描) - 弹性阈值设定:根据填涂中心位置,允许标记超出框线一定范围(如框线外 5 像素内仍算有效)。
- 概率化判定:结合填涂位置、面积、浓度等多维度特征,给出 “有效概率”(如 80% 概率为有效标记),而非非黑即白的判断。
选票格式变更(如新版选票) - 动态模板配置:允许管理员导入新选票模板,自动更新 ROI 区域坐标与标记规则,无需修改底层算法。
系统介绍:
投票选举系统(扫描仪版)与电子投票箱计票原理一致,具有更轻便、灵活的特点。适用于小型选举会议、分团选举或其他投票地点不集中的场景。
民主选举,特别是无记名投票,一般要具有机密性、性、可靠性、准确性、实用性和易操作性。
在企事业单位中,民主选举需要处理大量的数据。如果用人工去处理,不但费时费力,而且难以做好真实、公平,这些工作的成果也缺乏说服力。
如果采用高速扫描仪智能识别来读卡,然后配合能对数据作分析处理的投票选举统计软件,组成民主投票选举系统,不仅能大大降低统计得票数和有效票据的工作量,省时省力、快速准确,还能够消除投票人的思想顾虑,和减少其它不必要的人为因素干扰,使选举符合公平、公正、公开的标准。
采用高速扫描仪读选票的方式。现场联机阅读,多种选票混读。使用方便、识别准确,准确率,无误差。阅读、统计速度快。 在软件读卡过程中,可以根据用户的设定设置为多选无效、不选弃票等选项,自动统计总票数多少、有效票多少。可根据用户需求定义涂卡图像的识别如“√”、“O”。
读票机的准确性与可靠性依赖 “技术 + 制度 + 人工” 的三维防护:硬件通过冗余与校准确保物理信号采集稳定,软件借助算法校验与防篡改设计提升逻辑判断精度,制度流程则通过标准化操作与人工监督弥补技术局限性。这种多层级保障体系在全球主要民主国家的选举中已被验证 —— 根据美国 EAC(选举援助委员会)2022 年报告,符合认证标准的光学扫描读票机平均错误率<0.003%,远低于人工计票的 1.5% 错误率。未来,随着量子加密技术与联邦学习在选举系统中的应用,读票机的可靠性还将进一步提升,同时保持对选民操作习惯的包容性。