光学扫描式读票机(Optical Scan)
原理:通过光学传感器扫描选票上的标记(如铅笔填涂、墨水笔勾选),利用图像识别技术判断选民选择。
特点:
成本较低,兼容纸质选票,适合大规模选举。
需选票格式标准化(如固定位置的填涂框)。
应用场景:美国大选、印度议会选举等大规模纸质选票选举。
选票预处理:通过红外光源扫描选票,生成灰度图像,同时检测选票边缘的定位孔(registration holes)以校准位置。
区域划分:根据选票模板,将图像划分为总统候选人区、参议员区、公投议题区等独立 ROI。
填涂分析:对每个候选人对应的椭圆填涂框,计算黑色像素占比,超过 35% 则判定为有效投票。
异常标记处理:若同一总统候选人区检测到 2 个及以上有效填涂,系统标记为 “多选票”(overvote),该区域投票无效。
数据同步:每台读票机实时将计数结果通过加密网络传输至选区服务器,同时保存原始图像供事后审计(如 2020 年佐治亚州重新计票时,人工核对了扫描图像与纸质选票)。
南昊(北京)科技有限公司专业为广大客户提供:投票选举计票系统,换届选举选票计票器,选票计票器(机),选票读票器(机),电子选票机(器),电子票箱,智能扫描选举读票机等系统设备租售服务。
软件算法:从识别精度到防篡改机制
1. 多重校验算法架构
重复扫描比对:对每张选票进行至少 2 次独立扫描(间隔 50ms),比对两次图像的像素差异,若标记区域灰度值偏差超过 15%,则触发第三次扫描并人工介入(如日本选举法要求对争议票进行三次扫描)。
多特征融合判断:结合填涂面积、边缘轮廓、灰度梯度等多维度特征,采用加权投票机制(如面积占比权重 40%+ 边缘匹配度权重 30%+ 浓度均匀性权重 30%),避免单一特征误判(例:某区域面积达标但边缘锯齿状,可能被判为 “无意涂抹”)。
机器学习模型迭代:利用历史选举的有效 / 无效票数据(如美国 EAC 公开的选票数据集)训练 CNN 模型,对非标准标记(如超框填涂、轻描标记)的识别准确率提升至 99.2% 以上。
2. 防篡改与数据完整性保护
哈希值校验:对每张选票的扫描图像生成哈希值(如 SHA-256),存储于区块链节点或加密数据库,任何图像修改都会导致哈希值变更,可实时检测数据篡改(如德国部分州采用区块链存证选票图像)。
软件版本控制:读票机操作系统与识别算法采用签名固件更新机制,仅允许通过官方渠道推送的版本(附带数字证书)安装,防止恶意程序植入(如 2018 年美国佛罗里达州选举前,对所有读票机进行固件哈希值比对,拦截 3 台异常设备)。