光学扫描式读票机(Optical Scan)
原理:通过光学传感器扫描选票上的标记(如铅笔填涂、墨水笔勾选),利用图像识别技术判断选民选择。
特点:
成本较低,兼容纸质选票,适合大规模选举。
需选票格式标准化(如固定位置的填涂框)。
应用场景:美国大选、印度议会选举等大规模纸质选票选举。
条形码 / 二维码读票机
原理:选民通过填写或扫描条形码 / 二维码选票,机器读取编码后解析投票信息。
特点:
数据精度高,可存储更多信息(如选区、候选人编号)。
需提前印制带编码的选票,适合电子化程度较高的选举。
为确保选举公正,读票机需具备以下技术与措施:
1. 防篡改与加密技术
数据传输加密(如 SSL/TLS 协议),防止中途篡改。
区块链技术应用:部分试点项目通过区块链记录选票数据,确保不可篡改(如西弗吉尼亚州区块链投票试验)。
2. 冗余与审计机制
纸质选票备份:电子读票机需配合纸质选票,供人工审计或系统故障时使用。
双重计数验证:部分系统采用两台读票机独立计数,结果一致才确认有效。
3. 抗干扰与稳定性设计
防电磁干扰:设备硬件需通过电磁兼容性(EMC)测试,避免外界信号干扰。
离线模式:支持断电或网络中断时离线计数,恢复后同步数据。
4. 用户验证与权限控制
操作员身份认证:仅授权人员可访问系统后台,操作记录全程留痕。
选票防伪:通过水印、荧光油墨等物理防伪技术,防止伪造选票。
核心硬件架构:光学识别的物理基础
光学扫描式读票机的硬件系统主要由以下部分构成,共同实现选票标记的捕捉与转换:
硬件组件 功能描述
光源模块 - 通常采用 LED 光源(如红光、红外光),均匀照射选票表面,确保标记区域反光差异明显。
- 部分设备配备多波长光源,适应不同墨水(如荧光墨水)的识别需求。
图像传感器 - 多为 CCD(电荷耦合器件)或 CMOS 图像传感器,分辨率通常在 300-600dpi,确保捕捉填涂细节(如铅笔浓度、墨水边缘)。
- 扫描速度可达每秒 10-30 张选票,满足大规模选举效率需求。
光学透镜组 - 聚焦光线至传感器,校正图像畸变,确保标记位置映射到像素坐标。
传动机构 - 通过滚轮或传送带匀速输送选票,避免扫描时抖动导致图像模糊。
信号处理电路 - 将传感器捕捉的模拟信号转换为数字图像数据(如 RGB 或灰度值),为后续算法处理做准备。